Wettability of particles and its effect on liquid bridges in wet granular materials

Hooman HOornHAd • Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology • h.hoornhad@gmail.com
Eduardus A. B. Koenders • Institute for Construction and Building Materials, Technische Universität Darmstadt • koenders@wib.tudarmstadt.de
Klaas van Breugel • Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology • k.vanbreugel@tudelft.nl

Abstract
This paper provides results of an experimental study on the force-distance relationship between two particles connected by a liquid bridge. This experimental research is based on water bridges and extended to cement paste bridges with the aim to explain and model the rheological behaviour of fresh concrete mixtures, and to create a fundamental basis for developing mixtures with a predefined deformation performance. The research approach is based on a conceptual idea where the mixture is considered as an assembly of mutually interacting “particle-paste-particle” systems and the rheological behaviour of the mixture is related to the inter-particle interactions. The concept of capillary cohesion in wet granular materials, which describes the interaction between two particles connected by a liquid bridge, is considered the first step in the investigations. The effect of the wettability of the particles on the force-distance relation of two particles connected by a liquid bridge is studied. Static and/or quasi-static situations are in focus, i.e. where the cohesion dominates over other effects generated by the liquid, such as viscosity and lubrication. Tests were carried out using spherical stainless steel and glass particles and water was used as the liquid with a surface tension of $\sigma_{\text{water}}=0.072 \text{ mN/m}$. The contact angle between water and glass is about 15° while between water and stainless steel it is about 60°. It is found that the wettability of particles has a great influence on the force-distance relation of the interacting particles. Conclusion is drawn regarding the possibility to use the generated data as a basis for modelling the rheological behaviour of cement-based mixtures.

Keywords: Fresh concrete, rheological model, wet granular material, liquid bridge, wettability, contact angle, interaction force

I. Introduction

Fresh concrete is considered as an intermediate class between cement pastes and granular materials from a rheological perspective [1, 2, 3]. Fresh concrete exhibits a complex behaviour which can be close to either a cement paste or a granular system, depending on the properties and proportion of constituents in the mixture. The aim of this research is to explain and model the rheological behaviour of fresh concrete mixtures and to create a fundamental basis for developing mixtures with a predefined deformational performance [2].

In this study, a mixture is considered as an assembly of mutually interacting “particle-paste-particle” systems (see Fig. 1.a), in which the rheological behaviour of the mixture is related to the inter-particle interactions [4, 5]. A system consists of a pair of two-phase elements connected by a paste bridge (see Fig. 1.b). Each element consists of an aggregate particle covered with a paste layer. A paste bridge represents the cohesion between the elements and resists increasing distance between two elements [2].

In order to characterize the interaction in a “particle-paste-particle” system the concept of capillary cohesion in wet granular material [6], which describes the interaction between two particles connected by a liquid bridge (see Fig. 1.c), is considered the first step in the investigation. First, the interactions in "particle-liquid-particle" systems are studied experimentally. These tests are then extended for "particle-paste-particle" systems. In this paper preliminary results of the experimental work on “particle-liquid-particle” systems are provided.

![Fig. 1. Features of two-phase modeling approach [2, 4].](image)
2. Interaction between two particles connected by a liquid bridge

In a static or quasi-static situation, where the cohesion dominates over other effects generated by the liquid, such as viscosity and lubrication, the magnitude of the liquid bridge force is related to the geometry of a liquid bridge [6, 7, 8]. The geometry of a liquid bridge depends on 1) the characteristics of the particles (shape, size and wettability), 2) the surface tension of the liquid, 3) the volume of the liquid and 4) the inter-particle distance [2, 6, 9]. In this paper the wettability of solid particles and its effect on the force-distance relation of two particles connected by a liquid bridge is in the main focus.

Wettability is the ability of a solid surface to be wetted when it is in contact with a liquid. Wettability can be characterized by the contact angle θ_o, i.e. the angle at which the liquid–gas interface meets the solid–liquid interface (see Fig. 2). When the solid is extremely easy to wet, the contact angle has a low value. In this case a thin film of liquid is formed on the surface (see Fig. 2.a). It means that the liquid is strongly attached to the solid surface. With decreasing wettability of solid surface and thus increasing contact angle θ_o the solid–liquid interface decreases (see Fig. 2.b). When the solid is extremely difficult to wet, the contact angle θ_o approaches 180°, corresponding to the spherical drop having only one point of contact with the solid [10].

3. Experimental test

In order to study the force-distance relationship between two particles connected by a liquid bridge a displacement controlled tensile test was performed by a specially designed experimental apparatus (see Fig. 3) [2]. In the set-up, one of the particles (lower one) is fixed to a support mounted at a highly sensitive balance (10-4 g) and the other particle (upper one) is fixed on a cantilever and can move vertically. The movement of this cantilever is controlled by a velocity controlled micrometer screw and its displacement is recorded by a LVDT sensor connected to a computer.

After putting the liquid drop of a given volume on the stationary particle, the two particles are brought into contact. At this stage, the test starts and the distance between the two particles is gradually increased until the point is reached at which rupture of the liquid bridge occurs [2]. At selected inter-particle distances, the magnitude of the interaction force is measured. During the test, a picture of the liquid bridge is recorded for the profile analysis. Temperature and relative humidity in the chamber around the specimen is kept between 22-23°C and between 97-100 %, respectively.

Tests were carried out using spherical stainless steel and glass particles and water was used as the liquid with a surface tension of $\sigma_{w} = 0.072$ mN/m. The contact angle θ_o between water and stainless steel is about 60° and between water and glass about 15° (see Fig. 4).
4. Results and discussion

The results for 4 mm stainless steel and glass particles for two different volumes of the water bridge (0.1 mm\(^3\) and 0.5 mm\(^3\)) are shown in Fig. 5. Results show that with increasing inter-particle distance, S the interaction force first increases and then gradually decreases. This behaviour is more noticeable for the stainless steel-water-stainless steel system than for the glass-water-glass system. This behaviour can be explained as follows.

Any force that tries to change the actual shape of the drop in the equilibrium condition causes some instability inside the drop [2]. During the experimental test, it turned out that instability happens in the system when the inter-particle distance becomes less than the height of the drop due to the compressive stress applied to the drop. The applied force tries to increase the solid-liquid interface while the liquid naturally resists against this deformation. This leads to an increase in the compressive stress applied to the drop. The applied force tries to increase the solid-liquid interface while the liquid naturally resists against this deformation. This leads to an increase in the contact angle between the profile of the bridge and the solid surface at the intersection of the three-phase interfaces (see \(\theta\) contact angle between the profile of the bridge and the solid surface). This behaviour can be explained as follows.

The instability in the system increases by gradually decreasing the inter-particle distance. As the contact angle between water and glass is small (\(\theta_o=15^\circ\)), water can spread more easily over the surface of the glass particle in comparison with a spread of water on the surface of stainless steel particles, where the contact angle is considerably larger (\(\theta_o=60^\circ\)) (see \(\theta\) in Fig. 4) [2, 6]. Therefore, in the case of glass and water, the drop experiences less instability during the test than in the case of stainless steel and water.

The results for 4 mm stainless steel and glass particles for two different volumes of the water bridge (0.1 mm\(^3\) and 0.5 mm\(^3\)) are shown in Fig. 5. Results show that with increasing inter-particle distance, S the interaction force first increases and then gradually decreases. This behaviour is more noticeable for the stainless steel-water-stainless steel system than for the glass-water-glass system. This behaviour can be explained as follows.

Any force that tries to change the actual shape of the drop in the equilibrium condition causes some instability inside the drop [2]. During the experimental test, it turned out that instability happens in the system when the inter-particle distance becomes less than the height of the drop due to the compressive stress applied to the drop. The applied force tries to increase the solid-liquid interface while the liquid naturally resists against this deformation. This leads to an increase in the contact angle between the profile of the bridge and the solid surface at the intersection of the three-phase interfaces (see \(\theta\) contact angle between the profile of the bridge and the solid surface). This behaviour can be explained as follows.

The instability in the system increases by gradually decreasing the inter-particle distance. As the contact angle between water and glass is small (\(\theta_o=15^\circ\)), water can spread more easily over the surface of the glass particle in comparison with a spread of water on the surface of stainless steel particles, where the contact angle is considerably larger (\(\theta_o=60^\circ\)) (see \(\theta\) in Fig. 4) [2, 6]. Therefore, in the case of glass and water, the drop experiences less instability during the test than in the case of stainless steel and water.
particles. The “critical instability region” can be distinguished by the critical inter-particle distance, \(S \), representing the inter-particle distance below that liquid bridge profile becomes asymmetrical. As it is shown in Fig. 7 the critical inter-particle distance, \(S_c \), depends on the wettability of the particles. Critical inter-particle distance, \(S_c \), increases with decreasing wettability of particles.

For the stainless steel-water case, with contact angle of \(\theta_0 = 60^\circ \) between the water drop and surface of the particle and with drop volume of \(V = 0.5 \, \text{mm}^3 \), the instability effect became significant when the distance between the two particles becomes less than about 0.10 mm (see Fig. 5.b). In this case the maximum contact angle between the profile of the bridge and the solid surface becomes more than 90° with decreasing inter-particle distance (see Fig. 7.a). For the glass-water case, with a contact angle of \(\theta_0 = 15^\circ \) between the water drop and surface of the particle and with drop volume of \(V = 0.5 \, \text{mm}^3 \), the instability effect became significant at a shorter inter-particle distance, \(S_c \), than that for the stainless steel-water case. In this case the critical inter-particle distance, \(S_c \), is less than about 0.05 mm (see Fig. 5.b). With decreasing inter-particle distance the maximum contact angle between the profile of the bridge and the solid surface approaches to about 40°. Outside the “critical instability region” a quite symmetrical concave profile is observed for the liquid bridge between the particles (see Fig. 7). In this region the interaction force decreases with gradually increasing inter-particle distance (see Fig. 5). For the stainless steel-water case with drop volume of \(V = 0.1 \, \text{mm}^3 \), the instability effect became significant for an inter-particle distance less than about 0.05 mm (see Fig. 5.a). For the glass-water case with drop volume of \(V = 0.1 \, \text{mm}^3 \), instability effect was not observed (see Fig. 5.a). It is also observed that rupturing of the liquid bridge happens at a larger inter-particle distance with increasing contact angle, \(\theta_0 \). For the stainless steel-water case the rupture distance is about 20% larger than that of the glass-water case (see Fig. 5).

5. Conclusions

Results of an experimental study of the force-distance relation between two particles connected by a liquid bridge have been addressed in this paper. The experimental research on water bridges was the part of the experimental study which has been performed with the aim to create a fundamental basis for developing concrete mixtures with a predefined deformational performance. The effect of the wettability of the particles on the force-distance relation of two particles connected by a liquid bridge in static and/or quasi-static situations was in focus in this paper, where the magnitude of interaction force is related to the geometry of the liquid bridge. Wettability, which is defined as the ability of a solid surface to be wetted when in contact with a liquid, can be characterized by the contact angle \(\theta_0 \), i.e. the angle at which the liquid–gas interface meets the solid particle–liquid interface. The displacement controlled tensile tests were carried out using spherical stainless steel with low wettability (\(\theta_0 = 60^\circ \)) and glass particles with high wettability (\(\theta_0 = 15^\circ \)) and water was used as the liquid with a surface tension of \(\sigma_s = 0.072 \, \text{mN/mm} \). With respect to the inter-particle distance \(S \), two regions have been distinguished:

- Region A (critical instability region), with an inter-particle distance \(0 < S < S_c \) where the profile of the liquid bridge is asymmetrical concave-convex. In this region the interaction force increases with increasing inter-particle distance.
- Region B, with an inter-particle distance \(S > S_c \), where the profile of the liquid bridge is symmetrical concave. In this region interaction force decreases with increasing inter-particle distance.

It was found that the critical inter-particle distance \(S_c \) depends on the wettability of the particles. With decreasing wettability of particles, increasing \(\theta_0 \), the critical inter-particle distance \(S_c \) increases. It is also observed that with decreasing wettability of particles, increasing \(\theta_0 \), rupturing of the liquid bridge happens at a larger inter-particle distance.

References
